Solving Equations

Solving by Factoring:

Solve
$$x^2 + 2x + 25 = 11x + 5$$

$$x^{2} + 2x + 25 = 11x + 5$$

 $-11x - 5 - 11x - 5$
 $x^{2} - 9x + 20 = 0$

First, set the equation equal to 0 (move everything to one side).

$$(x - 5)(x - 4) = 0$$
 Next, factor the quadratic.

$$x - 5 = 0$$
 or $x - 4 = 0$
 $+5 + 5$ $+4 + 4$
 $x = 5$ or $x = 4$

Use the Zero Product Property to split into two equations and solve each one separately.

1.
$$n^2 - 6n - 7 = 0$$

2.
$$r^2 - 9r + 8 = 0$$

3.
$$p^2 = 5p - 6$$

4.
$$4r^2 - 10r - 4 = -7r + 3r^2$$

5.
$$v^2 - 4v - 23 = -7v + 5$$

Solve using Quadratic Formula:

$$x^{2} + 6x + 8 = 0 \quad -> \quad ax^{2} + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$x = \frac{-6 \pm \sqrt{6^{2} - 4^{*}1^{*}8}}{2^{*}1} = \frac{-6 \pm \sqrt{36 - 32}}{2}$$

$$= \frac{-6 \pm \sqrt{4}}{2}$$

$$= \frac{-6 \pm \sqrt{4}}{2}$$

$$= \frac{-6 \pm 2}{2}$$
There are 2 solutions:
$$x_{1} = \frac{-6 + 2}{2} \quad \text{or} \quad x_{2} = \frac{-6 - 2}{2}$$

$$x_{1} = -2 \quad \text{or} \quad x_{2} = -4$$

6.
$$x^2 - 4x - 5 = 0$$

$$7. x^2 - 6x + 7 = 0$$

8.
$$8w^2 - 8w + 2 = 0$$

9.
$$3w^2 - 12w = -12$$

10.
$$r^2 - 4r + 8 = 5r$$

Simplifying Radicals

To simplify a radical, we need to find the greatest perfect square factor of the number under the radical sign (the radicand) and then take the square root of that number.

$$Ex. 1: \sqrt{72}$$

$$\sqrt{36} \cdot \sqrt{2}$$

$$6\sqrt{2}$$

$$Ex. 2: 4\sqrt{90}$$

$$4 \cdot \sqrt{9} \cdot \sqrt{10}$$

$$4 \cdot 3 \cdot \sqrt{10}$$

$$12\sqrt{10}$$

$$Ex. 3: \sqrt{48}$$

$$\sqrt{16}\sqrt{3}$$

$$4\sqrt{3}$$

OR

Ex. 3:
$$\sqrt{48}$$

$$\sqrt{4}\sqrt{12}$$

$$2\sqrt{12}$$

$$2\sqrt{4}\sqrt{3}$$

$$2\cdot 2\cdot \sqrt{3}$$
This complete is an example of the complete in t

This is not simplified completely because 12 is divisible by 4 (another perfect square)

Simplify without using a calculator:

1)
$$\sqrt{160}$$

2)
$$\sqrt{70}$$

3)
$$\sqrt{50}$$

4)
$$\sqrt{24}$$

5)
$$\sqrt{150}$$

7)
$$\sqrt{32}$$

8)
$$\sqrt{210}$$

9)
$$\sqrt{490}$$

10)
$$\sqrt{729}$$

Factoring Polynomials

Factoring Strategies

- 1) Look for Greatest Common Factor (GCF)
- 2) # of terms in remaining polynomial

 - 4 Terms → factor by grouping 3 Terms → factor into product of 2 binomials
 - 2 Terms → difference of squares or sum/difference of cubes

1.
$$x^2 - 9x + 20$$

$$2.9x^2 + 9x$$

3.
$$x^2 + 16x + 64$$

$$4. x^2 - 2x - 15$$

5.
$$x^2 - 81$$

$$6.6x^2 - 11x + 4$$

7.
$$5x^2 + 10x$$

8.
$$10x^2 + 19x + 6$$

9.
$$6x^2 - 15x$$

10.
$$x^2 + 8x + 16$$